Friday, October 15, 2021

The Global Energy Crisis Is Exposing the Ideological Mistakes of Climate Activists

The goal is good--contain global warming. The results are not so good because so much of the climate movement allows ideological commitments rather than evidence and pragmatism to guide their activism. Ted Nordhaus' excellent essay on the Foreign Policy site provides a comprehensive discussion of the current energy crisis along with the energy and political realities that underlie the crisis and are frequently ignored by green movements and politicians.
"For years, the proponents of wind and solar energy have promised us a green future with electricity too cheap to meter, new energy infrastructure with little environmental impact on the land, and deep cuts in carbon emissions. But despite the rapid growth of renewable energy, that future has yet to materialize. Instead, many of the places that are furthest along in transitioning to renewable energy are today facing a crisis of power shortages, sky-high electricity prices, and flat or rising carbon emissions.
In California, Gov. Gavin Newsom has ordered companies owning backup diesel generators to operate them nonstop when electricity demand is high in order to avoid rolling blackouts. In Britain, exploding natural gas prices have shuttered factories, bankrupted power companies, and threaten to cause food shortages. Germany, meanwhile, is set for the biggest jump in greenhouse emissions in 30 years due to surging use of coal for power generation, which the country depends on to back up weather-dependent wind and solar energy and fill the hole left by its shuttered nuclear plants.
The proximate cause of all these crises has been surging natural gas prices as the world recovers from the COVID-19 pandemic. But the underlying problem is that despite huge bets on renewable energy over the last several decades, California, Britain, and Germany have chosen fossil fuels over carbon-free nuclear energy to backstop their electrical systems.
Germany and California have prioritized closing nuclear plants over decommissioning coal and gas plants. But with so much power still generated from fossil fuels, rapid declines in the cost of wind and solar have not translated into cheap electricity. Electricity prices, in fact, have tended to be highest in places with the greatest share of renewable energy. Public resistance to the growing land use impacts of renewable energy has further hobbled efforts to build out renewables and the infrastructure necessary to support them.
One might dismiss these inconvenient developments as hiccups in the early phases of a global energy transition. But in many ways, the early phases are the easiest: Wind and solar developers can cherry-pick the best locations with good access to existing transmission lines. There is a huge reservoir of existing, on-demand, fossil fuel power generation that can supply the lion’s share of electricity demand while also filling in for renewable energy sources when the sun doesn’t shine and wind doesn’t blow. Subsidies for renewable energy are manageable for taxpayers and electricity consumers as long as the share of wind and solar supplying the grid isn’t very high.
But as the share of renewable energy grows in places like California and Germany, the technical challenges associated with scaling up renewables become more difficult. Once the share of variable renewable energy (i.e., solar and wind) begins to approach 20 percent or so, it swamps the electrical grid whenever the sun is shining and the wind is blowing. Surges of wind and solar power at particular times of the day not only undermine the economics of other power sources on the grid but also undermine the economics of adding additional wind and solar. This phenomenon, called value deflation, is already eroding the economics of wind and solar in California and elsewhere—even at relatively low shares of grid penetration.
Sustained phases of low wind and overcast skies, as much of Europe saw this summer, create the opposite problem, with wind and solar generating far less electricity than normal. During those periods, grid operators need to have enormous amounts of backup generation standing by—essentially an entire second grid of capital-intensive fossil fuel plants that, under the best of circumstances, rarely need to operate but must still be built and maintained. Then there are seasonal variations in wind and solar that are larger still, requiring a vast overbuilding of wind and solar generation capacity in order to produce enough electricity during those times of the year when wind or sun is scarce. This, in turn, requires idling much of that overbuilt wind and solar generation when wind and sun are abundant."
There is much more in the essay. I recommend you read it. Possibly it will cause you to revise some of your priors.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.